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Abstract
The properties of dynamically screened electron–electron interactions in
a two-dimensional and quasi-two-dimensional semiconductor are described
analytically for the situation where the electron gas obeys classical statistics.
The electron–electron interaction is taken to be screened by the polar lattice
and by free electrons in the lowest subband. The character of the screening is
shown to be critically dependent on the energy and momentum exchanged
in the electron–electron interaction. A remarkable feature is the resonant
enhancement of the interaction strength by coupled-phonon–plasmon mode
effects. As a consequence, the coupled-mode enhancement of the electron–
electron energy exchange rate offers substantial competition to the energy-
relaxation rate of electrons via optical-phonon emission.

1. Introduction

Electron–electron scattering in quasi-two-dimensional semiconductors has been the topic of
considerable research over the last 20 years or so [1–12]. One motivation for this has been
to understand its role in phenomena such as the quantum Hall effect and localization effects
at extremely low temperatures [13]. Another motivation has been to quantify its effect on
transport properties, and it is in this context that the present paper is written.

Although electron–electron (ee) scattering by itself cannot relax the drift momentum and
energy gained from an electric field, it can, by randomizing these dynamic quantities within
the electron gas, affect the distribution function in the presence of a field and thereby affect
the transport properties, particularly at high fields. A well-known example of this is the
establishment of an electron temperature distinct from the lattice temperature that quantifies
a Fermi–Dirac or Maxwell–Boltzmann distribution. The condition for this to occur is simply
that the rate of energy exchange in ee collisions greatly exceeds the rate of energy relaxation
processes via other scattering mechanisms. In principle, it is also possible for momentum
exchange in ee scattering to dominate and this condition would lead to a drifted distribution,
i.e. one centred downstream of k = 0, where k is the wavevector. Indeed, in the early
days of the study of hot-electron transport in bulk polar semiconductors, the production of a
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drifted Maxwellian distribution was a common assumption [14, 15]. However, this assumption
was soon abandoned, at least for bulk material, once it became clear that a sufficiently high
electron concentration entailed a corresponding high concentration of charged impurities and,
in consequence, a high momentum-relaxation rate. But because charged-impurity scattering
is elastic it was still possible to assume that an electron temperature could be established, and
in many cases this was observed [16].

The situation in quasi-two-dimensional structures is radically different: the concentration
of electrons in a quantum well can be manipulated separately from the impurity concentration.
In zinc-blende-type heterostructures, e.g. AlGaAs/GaAs, the electron gas can be derived from
remote impurities via the technique of modulation doping. In wurtzite-type heterostructures,
e.g. AlGaN/GaN, the electrons derive from spontaneous polarization and from any residual
impurities [17–19]. In the former case the extra momentum relaxation introduced by
the presence of charged impurities is much reduced, as evidenced by the observation of
impressively large mobilities at low temperatures. In the nitride case scattering by charged
impurities can, in principle, be eliminated completely. Thus, in quasi-2D structures there
exists the possibility that a drifted distribution is possible under practical conditions. A recent
study of this case has led to predictions of novel hot-electron phenomena, including squeezed
electrons and absolute cooling [20]. Most studies of hot-electron transport have been carried
out for the room temperature case in the context of Monte Carlo simulations [21] in which
ee scattering is notoriously difficult to model. Moreover, at room temperature, energy and
momentum relaxation via scattering by optical phonons is often dominant. There is, therefore,
considerable scope for further study of hot-electron transport in quasi-2D structures, especially
at lattice temperatures low enough for optical-phonon scattering to be negligible. We have
reported such a study for the case of transport at 77 K in AlGaN/GaN and have concluded that
a hot-electron drifted Maxwellian distribution is possible [22].

In what follows we examine the dynamics of ee scattering. The study of ee scattering in
quasi-2D structures has been the topic of a number of papers, as we have already noted, but,
in most, the ee interaction has been assumed to be screened statically, which is only correct
for quasi-elastic collisions. In some studies employing Monte Carlo techniques, details of the
interaction are entirely hidden, whether static or dynamic screening is assumed. It is, however,
now generally accepted that the ee interaction is, in general, dynamically screened [23–
27]. Here, we give an analytic/numerical description of energy and momentum exchange
via the dynamically screened ee interaction in a polar lattice. We show that energy-exchange
rates show distinct resonances at the coupled-mode frequencies and trace this to the critical
dependence of dynamic screening on the energy exchange. As concrete examples we provide
quantitative measures for electrons in GaN and GaAs for comparison with phonon rates.

2. Theory

Our approach follows that of [26] which we outline here for convenience. We will regard the
rate of electron–electron scattering by electrons with the same spin as negligible because of
exchange and interference effects. The energy exchange rate can then be obtained by ignoring
spin and treating the interaction as a simple two-body collision in which an incident electron,
wavevector k1, collides with a target electron, wavevector k2, and after collision the electrons
have wavevectors k′

1 and k′
2. The frequency of this process is calculated as usual in the Born

approximation assuming that the electrons are confined before and after scattering in the lowest
subband, taken to be parabolic. The physically meaningful rates are momentum and energy
exchange rates rather than simple scattering rates, which means that the order of summation
must be such that the final sum should be over one of the final states suitably weighted by



Dynamically screened electron–electron scattering in 2D 1059

the amount of energy or momentum exchanged, i.e. by multiplying the integrand by E1 − E ′
1

for energy loss and by h̄(k1 − k′
1) for momentum loss. The calculation we give is of the rate

of energy exchange. When the energy exchanged is significantly large the rate will be also
approximately equal to the momentum exchange rate.

In order to be directly relevant to most hot-electron cases the calculation assumes
non-degenerate statistics and essentially follows the analytical treatment of Esipov and
Levinson [28] but with the addition of dynamic screening and allowance made for quasi-
2D status. In using a temperature to describe the distribution function we implicitly assume
that ee scattering is strong enough to establish an electron temperature but we do not assume
that the distribution is drifted. The scattering rate for the process k1 → k′

1 in an isotropic
Maxwellian distribution is:

W (k1,k′
1) = e4n

8π h̄ ANd

∫
exp

(−E2

kB Te

)
F2(q)

ε(q, ω)2q2
δ(E ′

1 + E ′
2 − E1 − E2)2 dk2 (1)

where n is the areal density of electrons, Nd is the effective density of states in the lowest
subband, A is the area, h̄q is the momentum transfer and ε(q, ω) is the permittivity. The factor
of two quantifies the exchange mechanism. Normal processes are assumed and the usual
conservation of crystal momentum obviates the integration over k′

2. Equation (1) is essentially
that of Esipov and Levinson [28] with the quasi-2D form-factor and dynamic screening added.
F(q) is the form-factor, which for a heterostructure is:

F(q) =
∫ ∞

0
dz

∫ ∞

0
dz′ ψ2(z)ψ2(z ′) e−q|z−z′ | (2)

where, in the case of a heterostructure, the z-dependent wavefunctions can be taken, for
example, to be of Fang–Howard form [30]. Integration over k2 is straightforward. The
integral over the angle between k1 and k′

1 can be expressed in terms of a new variable:

u = q

(k2
1 − k ′2

1)
1/2

(3)

so, after some manipulation and including the case for k1 < k ′
1 (corresponding to energy gain),

we get:

W (k1, k ′
1) = W0

∫ γ −1

γ

F2(u)

|� |3/2{ε(u,�)/ε∞}2
e�/2 exp

{ − |� |
4

(
u2 + 1

u2

)}
u2

{
(u2 − γ 2)

(
1
γ 2 − u2

)}1/2 du,

W0 = e4nh̄

8π1/2ε2∞m∗(kB Te)2 A
, γ =

∣∣∣∣k1 − k ′
1

k1 + k ′
1

∣∣∣∣
1/2

(4)

where ε∞ is the high-frequency permittivity of the lattice and � = (E1 − E ′
1)/kB Te is the

normalized exchange energy. The energy-relaxation rate for the incident electron is then of
the form:

Q =
∫

(E1 − E ′
1)W (k1, k ′

1)k
′
1 dk ′

1 A/2π. (5)

3. Screening

Dynamic effects enter into screening via the factor q · vcm , where vcm is the velocity of the
centre of mass [29]. It is straightforward to show that this factor is nothing but (E1 − E ′

1)/h̄
which is the frequency associated with the energy loss by the incident electron [26].
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Figure 1. Plasma and coupled-mode effects (77 K, n = 5 × 1011 cm−2). (a) The real part of
the electron permittivity for ω/ωL = 0.1, 0.2 and 1.0. (b) Plasmon and LO frequencies versus
wavevector (q0 = (2m∗ωL)0.5/h̄).

The permittivity is composed of the sum of lattice and electronic contributions. In a polar
semiconductor the lattice contribution in the long-wavelength limit is:

εL(0, ω) = ε∞
ω2 − ω2

L O + iω�

ω2 − ω2
T O + iω�

(6)

where � is the decay rate. The electronic contribution can be obtained in the random-phase
approximation neglecting the effects of exchange and correlation. A closed expression for the
non-degenerate state has recently been obtained by Lee and Galbraith [25]. The real part is:

εeR = e2m∗nF(q)

2π h̄2 Nd q2

[
A+	

(
1,

3

2
,− h̄2 A2

+

2m∗kB Te

)
+ A−	

(
1,

3

2
,− h̄2 A2−

2m∗kB Te

)]

A± = 1

2q

(
q2 ± 2m∗

h̄2 h̄ω

)
(7)

where Nd = m∗kB Te/π h̄2 is the 2D density of states and 	(1, 3/2,−z) is a confluent
hypergeometric function, and the imaginary part is:

εeI = e2m∗nF(q)

2π h̄2 Nd q2

√
πm∗kB Te

2h̄2

[
exp

(
− h̄2 A2−

2m∗kB T

)
− exp

(
− h̄2 A2

+

2m∗kB Te

)]
. (8)

The quantity that appears in the expression for the rate is the square modulus:

ε(q, ω)2 = (εL R + εeR)2 + (εL I + εeI )
2. (9)
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Figure 2. Energy-exchange rates for 2D GaN at 77 K for n = 1 × 1011 cm−2: (a) low range,
(b) high range (Q0 = 0.195 eV ps−1).

Let us consider the screening of quasi-elastic collisions with modest momentum transfer.
Taking the argument of the confluent hypergeometric function to be small, we can expand and
obtain:

εeR = εS
qs

q
, where qs = e2nF(q)

2εskB T
. (10)

Here, qs is the 2D static screening vector. At the other extreme, we can consider the case
of substantial energy exchange and take the asymptotic limit of the confluent hypergeometric
function: φ(1, 3

2 ,−z)
z→∞−→ 1

2z . The real part of the electron permittivity then can be expressed
as follows:

εeR = ε∞
ω2

p∞
ω2

q − ω2
, where ω2

p∞ = e2nF(q)q

2ε∞m∗ and ω2
q = h̄2q4

4m∗2 . (11)

Here, ωp∞ is the plasma frequency multiplied by the ratio of the static to the high-frequency
permittivity and ωq is assumed to be not too large. Resonances in the electron–electron
interaction occur for energy exchanges that cause the real part of the permittivity to vanish.
The corresponding frequencies are the roots of:

ω4 − ω2(ω2
L + ω2

p∞ + ω2
q) + ω2

Lω2
q + ω2

T ω2
p∞ = 0. (12)
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For modest electron densities, ω2
p∞ + ω2

q � ω2
L and the solutions are:

ω2
+ = ω2

L + ω2
p∞ − ω2

ps and ω2
− = ω2

ps + ω2
q (13)

where ωps is the plasma frequency (e2nF(q)q/(2m∗εs))
1/2. The higher-frequency resonance

has been shifted upwards from the LO frequency by the difference involving the high-and low-
frequency plasma terms. The lower-frequency resonance corresponds to the plasma frequency
modified by dispersion. In both cases the real part of the screening function vanishes but
the screening function itself remains finite because of the imaginary part. Thus, in the case
of a non-degenerate electron gas, we expect to see an enhancement of the electron–electron
interaction near the plasma frequency and near the LO phonon frequency.

A full numerical solution for the resonant frequencies shows that the approximations
employed to reach equation (13) grossly underestimate the wavevector dependence. Figure 1
shows an example of this dependence for the real part of the electron permittivity and for
the resonant frequencies (details to be found in section 5). In addition to the enhancements
of the rate arising from dynamic screening there is also the wavevector and energy-exchange
dependence of the integrand of equation (4) which favours the region around u = 1, so
minimizing the argument of the exponential. The net spectrum can be expected to be richer
than our approximate solution would suggest.

4. Energy exchange rates

The net energy exchange rate is determined mainly by substantial energy exchanges, even
though these are not the most rapid. This may be seen by expressing equation (4) as follows
(dropping the subscript 1):

W (k, k ′) = W0 J±(�)e�/2 (14)

where J±(�) is the integral, which is dependent on the sign of the energy exchange through
the denominator of γ (equation (4)). Noting that � > 0 implies loss of energy and � < 0
gain, we see that the net loss of energy by the incident electron is:

Q = Q0

(∫ E/kB T

0
�e�/2 J+(�) d� −

∫ ∞

0
�e−�/2 J−(�) d�

)
,

Q0 = e4n

16π3/2h̄ε2∞
(15)

where, now, � is the magnitude of the energy exchanged and the subscript on E has been
dropped.

Small energy exchanges contribute little to the integral (the factor � 3/2 in the denominator
of J (�) notwithstanding). When � � 1, J+ ≈ J− and when � � 1 the second integral
in equation (15) is small and there will be little error in replacing the upper limit by E/kB T .
Thus, equation (15) can be simplified for superthermal electrons as follows:

Q = Q0

∫ E/kB T

0
2� sinh(�/2)J+(�) d�. (16)

5. Application to a GaN heterostructure

We illustrate the theory by choosing parameters for a GaN heterostructure, i.e. m∗ = 0.23 m,
ε∞ = 5.35ε0, εs = 9.0ε0, h̄ωL = 92 meV, h̄ωT = 71 meV, � = 1 meV.
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Figure 3. Energy-exchange rates for 2D GaN at 77 K for n = 5 × 1011 cm−2: (a) low range,
(b) high range (Q0 = 0.975 eV ps−1).

Figure 4. Net energy loss rates for near thermal electrons (GaN, 77 K, n = 5 × 1011 cm−2):
circles, without approximation; squares, with approximation.
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Figure 5. Energy-loss rates at 77 K in 2D GaN for superthermal electrons with energy E . The
numbers on the curves refer to electron density in units of 1011 cm−2: (a) low range, (b) high range.

Approximate analytical results for the strictly 2D case have been obtained with the
assumption that the screening function and the integral in equation (4) can be evaluated for
u ≈ 1, which minimizes the argument of the exponential factor [26]. These results broadly
bear out the expectations mentioned above. However, in what follows, we make no such
approximations. The integral is evaluated numerically.

We consider first the strictly 2D case (F(q) = 1) and an electron temperature of 77 K.
The spectrum of energy loss for an electron density of 1 × 1011 cm−2 is shown in figure 2
for several values of the energy of the incident electron. Superthermal values of incident
energy are chosen to quantify the energy-exchange rate. This is a necessary choice since the
net energy exchange for a thermal electron (E/kB T ≈ 1) is close to zero. The rates given
in figure 2 are therefore the rates at which out-of-equilibrium electrons relax back into the
thermal distribution and are the ones to compare with relaxation rates associated with other
scattering mechanisms. Furthermore, the rates for large energy losses are essentially also the
momentum-exchange rates.

The rates show two resonances as expected—a weak resonance at low exchange energies
associated with the plasma frequency (h̄ωps/kB T ≈ 0.8) and a very strong resonance at
an exchange energy very near to the LO phonon energy (h̄ωL/kB T = 13.9). Increasing the
electron density to 5×1011 cm−2 shifts the low-energy maximum upwards (h̄ωps/kB T ≈ 1.8)

and splits the high-energy resonance into two peaks (figure 3). The origin of the splitting
is the dependence of the real part of the electron permittivity on wavevector relative to
q0 = (2m∗ωL/h̄2)1/2. Roughly speaking, when q > q0, εeR is positive and the real part
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Figure 6. Energy exchange rates including form-factor for n = 1 × 1011 cm−2: (a) low range,
(b) high range.

of the total permittivity vanishes at a frequency somewhat below ωL , whereas when q < q0,
εεR is negative so cancellation happens at a frequency somewhat above ωL . The Maxwell–
Boltzmann factor in the integrand of equation (4) maximizes at u = 1, which is equivalent
to q = q0, so both resonant frequencies appear with roughly comparable strengths. As one
would expect, the splitting increases with electron density.

The net energy-exchange rate is given by equation (15). Performing the integrals
numerically for the case n = 5 × 1011 cm−2 for near thermal incident electrons, we obtain the
results shown by circles in figure 4 where they are compared with the results obtained from
the approximate expression for superthermal electrons (equation (16)). The net rate should
be zero for E/kB T = 1: the small negative result shown by the circle indicates the level of
numerical error. Apart from the case E/kB T = 1, the approximate expression gives results
of sufficient accuracy.

Integrating over the energy-exchangespectral function (equation (16)) gives the net rate of
loss of energy for superthermal electrons. Figure 5 shows the results for electron densities 1, 2
and 5 × 1011 cm−2 (the latter density at the limit for non-degeneracy). A large increase occurs
for electrons with initial energies near and greater than the phonon energy (h̄ωL/kB T = 13.9).
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Figure 7. Energy exchange rates including form-factor for n = 5 × 1011 cm−2: (a) low range,
(b) high range.

It is notable that the highest rates are comparable with the 2D emission rate associated with the
optical phonons in GaN (≈9 eV ps−1). The rates for energy exchanges less than the phonon
energy are much smaller. A time constant can be associated with the energy loss rate via

1

τ
= WE = Q

E
. (17)

As previously mentioned, this rate can be taken to be the momentum relaxation rate for purposes
of comparison with other rates.

All of the above results are for the strictly 2D case. Including the quasi-2D nature affects
the rates by the q-dependent form-factor which, of course, depends on the details of the
quantum well. Figures 6 and 7 illustrate the effect of including the form-factor for the case
of a triangular well and a Fang–Howard wavefunction [30]: ψ(z) = (b3/2)1/2ze−bz/2 with
b = 4.8 × 106 m−1:

F(q) = 8 + 9(q/b) + 3(q/b)2

8[1 + (q/b)]3
. (18)

Near the phonon resonance the wavevector is q0 = (2m∗ωL/h̄2)1/2, which would lead
to F(q) ≈ 0.2. Thus, a reduction by a factor of five might be expected but it turns out that
rates are reduced by a factor of only three or four (roughly). The reason for this smaller
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Figure 8. Energy exchange rates in 2D GaAs for n = 2 × 1010 cm−2: (a) low range, (b) high
range.

reduction is that substantial contributions to the rate are associated with the resonances where
the real part of the dielectric function vanishes, leaving the screening to be determined by the
imaginary part. This is dominated by the electronic component which means that the squared
form-factor tends to cancel out. Similar considerations explain the insensitivity of the energy
exchange rates to electron density once the density is high enough. The effect of including the
form-factor for the low-energy range is significantly smaller because smaller values of q are
involved.

In our example the 2D low-energy rate for the upper value of density is about 1×1013 s−1,
so in cases where the mobility is much greater than e/(WE m∗) ≈ 800 cm2 V−1 s−1 we can
expect the hot-electron distribution to be a drifted Maxwellian. Including the form-factor
reduces the rate by roughly a factor of two and increases the mobility to 1600 cm2 V−1 s−1.
It is interesting to notice that the introduction of the form-factor to the bare optical-phonon
interaction reduces the strength by a factor of five (roughly), making the energy relaxation
rates for optical-phonon scattering and ee scattering comparable.

We have looked briefly at the situation in 2D GaAs choosing an appropriately lower
temperature (20 K). Figure 8 shows the energy-loss spectrum for an electron density of
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2 × 1010 cm−2. Under these conditions the phonon resonance is quite sharp. In general,
the spectrum is similar to that for GaN.

The establishment of a drifted Maxwellian will, of course, affect the electron–electron
energy and momentum rates. We make no attempt to address this effect here.

6. Summary

We have examined in some detail the effect that dynamic screening has on the rate of energy
exchange in electron–electron collisions. The rate is significantly increased when the exchange
energy is near to either the plasmon or the optical-phonon energies. Rates are calculated for
non-degenerate electrons in GaN at 77 K and for GaAs at 20 K. It is shown that the energy-
exchange rates can be comparable to the energy-relaxation rate associated with the emission
of optical phonons.
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